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Abstract

It is critical to accurately estimate the impact of non-pharmaceutical mitigation poli-
cies on the COVID-19 pandemic. Direct estimation of these effects using standard
epidemiological models can lead to biased estimates. This is because epidemiolog-
ical model estimation is not tailored to disentangle effectively naturally occurring
changes in behavior unrelated to the shelter-in-place interventions from the effect
of the interventions themselves. In this paper, we propose a novel framework that
combines synthetic control with compartmental models to jointly estimate policy
effects. Our approach detects a 14.3% decrease in R0, the expected number of
secondary infections an infected individual inflicts. This is an epidemiologically
significant effect given the multiplicative nature of R0.

1 Introduction

One of the main indicators that health experts and government officials have considered when
assessing the effect of shelter-in-place (SIPO) policies implemented in early Spring 2020 is the
evolution of R0, the expected number of secondary infections an infected individual inflicts, pre
and post lockdown. The limitation of this approach is that the drops in R0 could be substantially
driven by naturally occurring changes in people’s behavior. For instance, as people observe cases
and death tolls rise, they would physically distance themselves on their own without the need of
imposing a lock-down. A possible way to remedy this is to model the contagion rate explicitly
as decreasing after the date a lock-down has been placed and estimate that decrease. However, it
is entirely possible that there are other changes happening in people’s beliefs at the exact date a
lock-down is implemented independent of it. In this sense, the estimated decrease in R0 would be
upward-biased for the causal effect of the lock-down. To correct for this bias, we use Synthetic
Controls to construct a counterfactual series that traces the evolution of deaths in the absence of the
lock-down. We use Approximate Bayesian Computation - Sequential Monte-Carlo (ABC-SMC)
techniques [9, 10, 11] to estimate a compartmental model jointly for the observed and synthetic
series and obtain the corresponding R0. We display the difference in R0s between the observed and
synthetic curves that gives the causal effect of lock-downs and indeed we are able to detect a small,
but statistically significant (at 10% level) causal effect on R0 starting 5 days after lock-down for a
period of 2-weeks, reducing R0 from 1.75 to 1.5. We fitted a Bayesian model to the observed data
and synthetic curve: these type of analyses are common in epidemiology, as they can better adapt
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to model misspecification and can better handle the uncertainty in parameter estimation of these
complex models [5, 3, 4]. We are able to detect such small, but epidemiologically significant effects
because of the multiplicative nature of R0, thanks to tighter parameter posteriors obtained from the
joint-estimation. While the effect of the policy seems to dissipate towards the end of our sample (ie,
the R0s from both series converge), we find evidence that the lock-down managed to push the drop
in R0 to an earlier date compared to if no lock-down had occurred, which is in line with lock-down
policies trying to curb the epidemic as fast as possible to avoid exponential spreads.

2 Combining Epidemiological Models and Synthetic Controls

We consider an extended Kermack-McKendrick Model [6, 7, 8] to explicitly incorporate the fatal
documented cases. We will be fitting our models on cumulative death series only as we believe
reported cases are noisy and imprecise as they are subject to state testing capacities, people’s
willingness to get tested, etc, hence not reflecting the true state of the epidemic. Our model,
named SEIRHF, particularly accounts for the distinction between detected (recovered diagnosed,
and therefore documented) and undetected (recovered undiagnosed, and therefore not documented)
infections. The compartmental model and its dynamics are depicted in Fig. 1 of the Appendix
along with the dynamical equation system. Notably, we assume a time-varying effective contagion
rate, 1

τ̄Con(t) , where τ̄Con(t) = ρ(t) N
NS(t) with N total population size and NS size of susceptible

population at time t. ρ(t) captures how the contagion rate evolves over time and follows the equation1

ρ(t) = ρinit + ρisol(t) log(1 + t), where ρinit is the structural (biological) transmission probability
that is not affected by behavior change whereas ρisol captures the effect of behavior change that is a
combination of people becoming more cautious as the epidemic progresses and the direct effect of
restrictions on reducing social contacts such as ban on gatherings or business closures. We assume
that the belief adjustment process is progressive rather than sudden, with steeper adjustments in the
beginning, hence the use of log.2 We are also focusing on the first few weeks following the start of
the epidemic, which justifies the assumption that ρ(t) is monotonically increasing.3 As can be seen,
it is hard to disentangle which part of ρisol is due to naturally changing behavior and which part is
directly related to lock-downs. A partial remedy is to assume a discrete jump in ρisol(t) starting at the
date of lock-down implementation. In this first version of our paper we fix for simplicity ρisol(t) = 0
for all periods before lock-down and then we estimate it for all periods thereafter by restricting it to
be constant. This may still not be satisfactory, however, as the lock-down date could be endogenous
to people’s behavior: it could be that lock-downs are imposed as a response to people starting to
panic and distance themselves, which means people would have reduced contacts in the absence of
the lock-down anyway.

To capture the pure effect of the lock-down, we need a counterfactual series that shows the evolution
of deaths had no lock-down been imposed. We construct such counterfactual curve using Synthetic
Controls ([1], [2]). Appendix 1.4 details this approach, but essentially we need to have a pool of N
areas for T periods, with the N -th area exposed to the policy at period t∗, called the treated area, and
the remaining N − 1 areas, called control areas, never exposed to the policy. We define the time
indicator t with respect to the day the first death was recorded in a given area rather than calendar
dates as different areas could be at different points in their epidemic trajectory at the same calendar
date. We use all pre-intervention periods for t ∈ {0, 1, ..., t∗ − 1} when none of the areas have been
treated by the policy and find the linear combination of control areas that traces best the trajectory of
the treated area. Then, we use those weights and the outcomes for the control areas post-intervention
to construct a counterfactual series for the treated area that displays how the curve would have
evolved had no lock-down policy been imposed. This is because the control areas have not been
exposed to the policy in the post-intervention period. We use Washington-Arlington-Alexandria
(WAA) metropolitan area as a case-study in this paper since it was hard to find valid control units for
other areas as we explain in Section 1.4 of the Appendix. We construct our data series by pooling
fatality series from the counties belonging to this metropolitan area. We use log deaths as exponential
curves are not well-justified by the assumptions underlying the Synthetic Control model. Our log

1In theory, it could happen that the contagion rate could still be increasing even if ρ(t) increases because
more isolation leads to a higher share of susceptible. This effect, however, is of second-order in our estimations.

2We are in the process of validating this pattern using mobility data.
3It is perfectly possible that people might get tired of isolation in later periods so that they actually increase

their interactions, driving ρ(t) down. Our series, however, ends in late-April before relaxations start.
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death series starts on March, 22nd (five days after the area recorded its first death to correct for initial
noise in reporting) and ends 39 days later on April, 29. Applying the Synthetic Control method, we
obtain the curve in Fig. 1.

Figure 1: Evolution of Log Deaths, Observed vs Counterfactual Curves

The lock-down in the Washington-Arlington area occurs 9 days after the start of our series. Since the
effect of the lock-down on deaths occurs with a two-to-three-week delay, we set the “effective policy
date” to occur 16 days after the implementation of the lock-down. Hence, we have 9+16 = 25 time
periods upon which we perform weight estimation and validation. We use the first 16 periods out of
the 25 for estimation and remaining 9 for validation (the shaded area). We give the estimation details
and the set of control units used as well as a series of robustness checks in the Appendix. Inspecting
Fig. 1, it is reassuring to see that the synthetic curve tracks the observed curve almost exactly both
during training period and validation period. Seeing a large disparity between the two curves would
invalidate our method as we should not be seeing divergence before the expected effect of the policy
kicks in. We indeed see that around two weeks after lock-down, the slope of the death series for the
observed curve is lower than that of the synthetic curve which implies that lock-downs did have an
incremental effect on curbing deaths independent of naturally occurring changes in people’s behavior.
The reduced form synthetic control treatment effect calculated as the average difference between
the two curves post intervention (after the green bar) equals (after transforming the logs back to
counts) -150.65 deaths. That is, on average, 151 lives have been saved due to the lock-down during
our sample period. This reduced-form estimate, however, is hard to interpret for policy makers, as
they are interested in how the lock-down affects the evolution of the epidemic more generally.

Hence, we use both curves as inputs to our KM-M model and derive the corresponding R0s. We
restrict all model parameters to be shared across the two series except for ρisol that we set equal
to 0 for the synthetic series all throughout the period as by design, the synthetic series assumes
there is no policy effect.4 For estimation, we use the state-of-the-art variant of the ABC procedure,
called Approximate Bayesian Computation - Sequential Monte-Carlo (ABC-SMC) [11], with the
L1 loss function on fatal cases for training. Our error for out-of-sample validity is within the range
of errors that CDC uses for their ensemble forecasts (see estimation details and model performance
comparisons in Appendix 1.2).

3 Estimation Results

We now show in Fig. 2 how R0 evolves over time both for the observed and counterfactual curves
along with 90% confidence bands obtained from the Bayesian posteriors. We also present in Fig. 3
the log ratios between R0 observed and R0 synthetic to be able to track the effect of the policy more
directly.

4We believe that the rest of the parameters such as hospitalizations, death rates, incubation and recovery
rates are related to biology and state capacities that could not have been moved by lock-downs although we
do recognize that expansion of hospital beds and medical supplies could also have affected some of those
parameters, something we aim to account for in future versions of this paper.
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Figure 2: Evolution of R0
Figure 3: Evolution of log R0observed

R0synthetic

First, remember that the effective contagion rate is set to be identical for both curves by design before
lock-down date which occurs at Day 10 in our sample, hence the curves are identical up to that
day. After Day 10, we observe that both curves trend downwards, which implies that part of the
decreases in R0 is driven by naturally occurring behavioral changes. However, we see that the R0 for
the observed series always tends to be below the R0 for the synthetic series. This suggests that the
lock-down has an incremental effect on R0. According to Fig. 3, this effect starts to be significantly
different from 0 on Day 15 (5 days after lock-down) and loses significance two weeks later. This
can be due to the fact that the variance in our posteriors at the end of the sample does not allow us
to detect that persistence. We need to mention, however, that our posteriors for R0 of the observed
series is much tighter when estimated using both the observed and synthetic series as common inputs
to the model compared to using the observed series only (see Fig. 5 of the Appendix). This effect
could be purely mechanical as we are simply adding an extra input to the model or more interestingly,
it could be because we are adding extra information in the model, in particular, the fact that both
curves share the same model structure, evolution dynamics and most model parameters as explained
above. Had we relied on estimating the R0 for the observed series using the observed series only
rather than the joint-estimation, we would not be able to detect the small effects we observe in a
statistically significant way, even though such effects could be substantial because of the exponential
nature of the spread of the epidemic. 5

While Fig. 2 shows that the magnitude of the lock-down effect seems to be small (1.75 vs. 1.5),
a persisting effect of such magnitude can still generate big effects on the spread of the epidemic
because of the multiplicative nature of R0. We do see, however, from Fig. 2 that the synthetic curve
starts dropping faster than the observed curve at the end of our series. So, it appears that R0 would
have eventually dropped even in the absence of lock-down, it is just that the lock-down makes the
drop occur earlier. This seems to be in line with the goal of the policy that aimed at halting the spread
as fast as possible, thus avoiding large exponential increases in infections and the saturation of the
health systems.

4 Conclusion

In this paper, we combine the best of two worlds from epidemiological and synthetic control models
to assess causal effects of non-pharmaceutical mitigation policies on the spread of the COVID-19
pandemic. While synthetic controls are good at estimating average causal effects on observed
outcomes such as death counts, compartmental models are able to estimate epi-parameters that
are more useful to understand the evolution of the epidemic. We focus on the effect of shelter-in-
place policies on R0 and take the Washington-Arlington-Alexandria (WAA) metropolitan area as a
case-study. We construct a counterfactual death count series for WAA using synthetic controls that
shows the evolution of death counts in the absence of a lock-down. We then jointly estimate the
R0s series for the observed and synthetic series via an extended Kermack-McKendrick Model using

5We still remain cautious about the gains in terms of reducing posterior variance, however, since we recognize
that the synthetic control series is itself estimated with uncertainty, and incorporating this extra uncertainty in the
estimation of the epi-parameters could adversely affect the shape of their posteriors. Unfortunately, up-to-date,
there is no clear way in the Synthetic Control literature to quantify this uncertainty.
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Approximate Bayesian Computation methods. We see that the lock-down starts reducing the R0 5
days after its implementation from about 1.75 to 1.5 and the reduction is persistent at least for two
more weeks. We cannot reject the hypothesis that the effect dissipates in the fourth week following
the start of the lock-down (that might be due to high posterior variance), although we find evidence
that the lock-down resulted in moving the drop in R0 to an earlier date, which is in line of the goal of
such restrictive measures.

References
[1] A Abadie. Using synthetic controls: Feasibility, data requirements, and methodological aspects.

Journal of Economic Literature, 2019.

[2] Alberto Abadie, Alexis Diamond, and Jens Hainmueller. Synthetic control methods for compar-
ative case studies: Estimating the effect of california’s tobacco control program. Journal of the
American statistical Association, 105(490):493–505, 2010.

[3] Igor Burstyn, Neal D Goldstein, and Paul Gustafson. Towards reduction in bias in epidemic
curves due to outcome misclassification through bayesian analysis of time-series of laboratory
test results: Case study of covid-19 in alberta, canada and philadelphia, usa. BMC Medical
Research Methodology, 20:1–10, 2020.

[4] Sander Greenland. Bayesian perspectives for epidemiological research: I. foundations and basic
methods. International journal of epidemiology, 35(3):765–775, 2006.

[5] Prashant K Jha, Lianghao Cao, and J Tinsley Oden. Bayesian-based predictions of covid-19
evolution in texas using multispecies mixture-theoretic continuum models. Computational
Mechanics, pages 1–14, 2020.

[6] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of
a mathematical and physical character, 115(772):700–721, 1927.

[7] William Ogilvy Kermack and Anderson G McKendrick. Contributions to the mathematical
theory of epidemics. iii.—further studies of the problem of endemicity. Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character,
141(843):94–122, 1933.

[8] WO Kermack and AG McKendrick. Contributions to the mathematical theory of epidemics: V.
analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete
immunity. Epidemiology & Infection, 39(3):271–288, 1939.

[9] Emmanuel Klinger and Jan Hasenauer. A scheme for adaptive selection of population sizes
in approximate bayesian computation-sequential monte carlo. In International Conference on
Computational Methods in Systems Biology, pages 128–144. Springer, 2017.

[10] Tina Toni and Michael PH Stumpf. Simulation-based model selection for dynamical systems in
systems and population biology. Bioinformatics, 26(1):104–110, 2010.

[11] Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Approxi-
mate bayesian computation scheme for parameter inference and model selection in dynamical
systems. Journal of the Royal Society Interface, 6(31):187–202, 2009.

5



Improving Posterior Estimation of COVID-19 Policy
Effects With Synthetic Control Guided

Compartmental Models

Marie Charpignon
MIT

Matias Cersosimo
Stanford University

Alexandr Lenk
Stanford University

Sharon Newman
Stanford University

Chetanya Rastogi
Stanford University

Jaime Gimenez
Stanford University

James Zou
Stanford University

1 APPENDIX

1.1 Data Source Description

In this work, we use reported time series of deaths, as they are believed to be better documented
than infections. In addition, the reporting of deaths should be less heterogeneous across regions than
infections, in that the latter strongly depends on the timing of testing deployment and capacity, as well
as on health-related behavior (e.g., toward seeking care). However, the cumulative number of deaths
also has imperfections. Hence, in the future, sensitivity analysis could be conducted to adjust for the
suspected under-reporting of the total number of deaths due to SARS-CoV-2 infection [14, 18, 4]. Our
models leverage death data as provided by USA Today [21], which are routinely collected from the
John Hopkins Coronavirus Resource Center (JHU) [6], at the county-level and state-level. Note that
all COVID-19 death counts are provisional, and may also be defined differently in various reporting
and surveillance systems (e.g., JHU, NYT [19], USAFacts [8], and the CDC [3]). There are mainly
two reporting conventions: occurrence deaths and residential deaths. Occurrence deaths reflect the
location where a person died, while residential deaths are based on a person’s permanent address. As
a matter of fact, the CDC [5] and NYT [19] appear to use occurrence data at the county-level, while
JHU [6] appears to use residential data. People from surrounding communities may be coming to
hospitals in counties with a higher prevalence of healthcare facilities or better medical centers, thereby
increasing the total local death count per capita. In other words, in counties with hospitals, occurrence
deaths would certainly be much higher than their residential deaths. These considerations on data
quality and definition of the number of COVID-19 reported deaths are essential [5], as county-level
death trajectories are the main input of our model based on Bayesian approaches.

In our analysis, we consider an intermediate geographical unit of interest, the Core-Based Statistical
Area (CBSA) [11]. A CBSA is a set of one to several counties (from 1 to 40), including a urban
epicenter of at least 10,000 inhabitants as well as neighboring counties that are socioeconomically
tied to the urban center, mainly via commuting (e.g., residential suburbs). Considering CBSAs,
which are compromised of both metropolitan (MSAs) and micropolitan (µSAs) statistical areas, is
particularly relevant to pandemics, as large and densely populated urban centers are often hit first by
waves of infectious diseases, and the covid19 epidemic is no exception (first Wuhan in Asia, then
Milan and Madrid in Europe, and Seattle, New York City, Detroit and New Orleans in the U.S.) [9].
In the U.S. and Puerto Rico, there is a total of 388 MSAs (more than 50,000 people) and 541 µSAs
(at least 10,000 and fewer than 50,000 people). So far, our modelling focus has been on metropolitan
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areas that have been hardest hit, in terms of the total number of documented cases per 100,000 people.
Note that certain counties belonging to rural areas are not part of any CBSA (1,226 out of 3,141
counties in total, i.e., 39%). Beyond the fact that CBSA-level units may be more homogeneous and
therefore more comparable - at least within their respective metropolitan and micropolitan groups -
because of similar levels of urbanity, the advantage of considering an intermediate geographical
resolution is to partially circumvent the inherent noise of county-level time series - aggregation
helping smooth out the cumulative death count at the CBSA-level.

We chose specifically to study CBSAs that represent (1) diverse communities around the US (2)
featured different timelines for adoption of shelter-in-place orders and (3) suffered the largest number
of cases per 100,000 people. In order to capture diversity between communities we chose CBSAs
that fall into different groupings from the American Communities Project. [12] The American
Communities Project divides US counties into regions that differ among dimensions such as age,
race, income, religious affiliation and more. There are 15 different categories and some of these are 1)
African American South, 2) Aging Farmlands, 3) Big Cities, 4) Evangelical Hubs, 5) Middle Suburbs,
and more. We also split CBSAs into groups based upon when they enacted shelter-in-place orders. A
CBSA is sorted into the early adopter category if its sate went into shelter-in-place before March
25th, average-speed adopter between March 25th and April 1st, and late-speed adopter otherwise. If
a CBSA include counties in different states, it’s category is designated based on the the state that
contain the majority of its urban area.

Given these 45 groupings (15×3), we chose CBSAs that had the highest number of cases per 100,000
people. We further had to limit our study locations to areas which have adequate data available.
We have only just begun our analysis of this group of chosen CBSAs, and for the purposes of this
report are focusing on a case study of a single CBSA that has yielded good and stable results thus far:
the Washington-Arlington-Alexandria DC-VA-MD-WV CBSA. While USA Today does not report
deaths by CBSA, we construct our death dataset at CBSA level by pooling the counties belonging to
that particular CBSA. The Washington-Arlington-Alexandria DC-VA-MD-WV CBSA covers several
counties, and includes multiple counties in the American Communities Project groups of Exurbs,
Military Posts, and Urban Suburbs, and single counties in each of the categories of Graying America,
College Towns, and Big Cities. Distinct features of Exurbs are that they lie on the outskirts of major
metropolitan areas and are wealthy with a median annual income of $65.5K. Military Posts are young
with only 13% of the population over 62. Finally, Urban Suburbs are densely populated, diverse,
and wealthy, with each having roughly 500,000 inhabitants, being 58% white, and with an average
median annual household income of $67.8k.1

Specifically for the CBSA of Washington-Arlington-Alexandria DC-VA-MD-WV, according to USA
Today[21], the first case was declared on March 6th, the first death occurred 12 days later on March
18th. Our data sample ends on April, 29th. We ended the data sample at that point since that was the
time period where some regions started re-opening, mobility started increasing and people become
more habituated to the new environment, factors that would require more complex modelling choices
for the contagion rate in our model, which leave for a later version.

1.2 Model Details

1.2.1 Model Description

We consider an extended Kermack-McKendrick Model [15, 16, 17] to explicitly incorporate the fatal
documented cases and hospitalizations (Fig. 1).

1For reference, the real median household income was $59k in 2016 [13]
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Figure 1: SEIRHF model

The latent compartments in our SEIRHF model include :

NS(t) := Number of susceptible individuals at time t.
NE(t) := Number of exposed individuals at time t.
NIS(t) := Number of infectious symptomatic individuals at time t.
NUR(t) := Number of recovered patients at time t that have not been diagnosed at any point.
NH(t) := Number of hospitalized individuals at time t.
NR(t) := Cumulative number up to time t of recovered patients with a positive diagnosis.

We include number of hospitalized as a latent compartment as in the specific case of Washington,
DC, the website only publishes current and not cumulative hospitalizations. In future versions, we
would like to incorporate information on hospitalized as well as recovered patients. Hence, the only
observed compartment of the model includes:

NF (t) := Cumulative number of fatal cases up to time t.

We posit that the dynamics of these compartments can by modeled by a linear system of first order
ODEs:

d

dt
N(t) = A(t,N(t)) ∗N(t) + b(t)

with the initial conditions NS(0) = N0 representing the initial total population, where we define the
(time-location varying) matrix A of coefficients, vector N , and the vector b as follows.

N(t) = (NS(t) NE(t) NIS(t) NUR(t) NH(t) NF (t) NR(t))
T

A(t,N) =



0 0 −τ̄−1Con,S 0 0 0 0

0 −τ−1Inc τ̄−1Con,S 0 0 0 0

0 1
τInc

−(τ−1Rec + τ̄−1Dia,S + ρHos) 0 0 0 0

0 0 τ−1Rec 0 0 0 0
0 0 ρHos 0 −(τ−1Hos + ρ̄Fat) 0 0
0 0 0 0 ρ̄Fat 0 0
0 0 τ̄−1Dia,S 0 τ−1Hos 0 0


b(t,N) =

(
0 F̄ext 0 0 0 0 0

)T
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The parameters defining this equation are characterized as follows, with superscript bars indicating
the corresponding terms are functions of (t,N).:

F̄ext := Incoming individuals exposed to the virus from an external system.

F̄ext,date := The date at which the incoming individuals exposed to the virus from an external system start affecting the susceptible population.
τ̄Con,S := Typical time it takes for a symptomatic patient to infect a susceptible person.
τ̄Dia,S := Typical time until diagnosis of a symptomatic patient.
τInc := Typical time representing the incubation period.
τRec := Typical time representing the infectious period until recovery.
ρHos := Rate of diagnosed symptomatic patients requiring hospitalization.
τHos := Typical time to recovery for hospitalized patients.
ρ̄Fat := Rate of fatal cases among the hospitalized patients.

We assume that τ̄Con,S(t) is time-varying and posit the following equation:

τ̄Con,S(t) = ρ(t)
N

NS(t)

with ρ(t) = ρinit + ρisol(t) log(1 + t) The first term, ρ(t) reflects the structural probability of
infection independent of people’s behavior whereas the second term, ρisol(t) depends on people’s
behaviour and implemented policies. More cautious behavior or stricter isolation policies limit
interactions between individuals, which reduces the effective contagion rate. We multiply ρisol(t)
by log as we believe such behaviour adjustment process is progressive and increases at a concave
rate, which is well reflected by the functional form implied by the log. In future versions, we plan to
more rigorously micro-found the functional form of τ̄Con,S(t) from an optimization problem where
an agent maximizes her utility function equalizing marginal costs and benefits at the optimum.

The prior distributions of the parameters are set as follows:

Parameter Distribution name Arguments Source
Fext,date uniform 0 to 14 [23]
Fext uniform 0 to 15 uninformative prior covering the true posterior [10]
ρinit uniform 0.2 to 0.6 uninformative prior covering the true posterior [10]
ρisol uniform 0 to 5 uninformative prior covering the true posterior [10]
τ̄Dia,S uniform 1 to 4 uninformative prior covering the true posterior [10]
ρ̄Fat uniform 0.05 to 0.33 [20]
ρHos uniform 0.02 to 0.25 [20]
τHos uniform 28 to 35 [23]
τInc fixed 5.06 [23]
τRec fixed 14 [23]

Table 1: Prior distribution of the parameters

To estimate the model parameters based on observed data series, we use the state-of-the-art variant of
the ABC procedure, called Approximate Bayesian Computation - Sequential Monte-Carlo (ABC-
SMC) [22], with the l1 loss function on fatal cases for training. ABC allows us to recover a set of
parameters that we hope best explains the data. Having defined a set of prior distributions p(θ) over
the set of parameters, one tries to recover the posterior distribution p(θ|X) over these parameters
having observed the data. The usual Bayes formula p(θ|X) ∝ p(X|θ)p(θ) cannot be used here as
we do not have a tractable likelihood. Thus, ABC approximates the posterior distribution through
a rejection sampling scheme. For a given random sample of a set of parameters, the procedure
evaluates the mismatch between the corresponding generated sample and the observed data. An
acceptance-rejection criterion is then used to either keep the set of parameters or reject them. Doing
this successively while making the acceptance criterion more stringent, leads to an algorithm that
outputs refined sets of parameters that increasingly match the observed data. We describe the priors
we use as well as the parameters we fix based on prior medical literature that has shown those to be
consistent across geographical location in the Appendix.
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1.2.2 Model Performance

We compare our model’s out-of-sample validity to other models upon which the CDC makes
ensemble forecasts on evolution of death. We obtain the other model errors from the Covid19
Forecast Hub Evaluation GitHub Repository (https://github.com/youyanggu/covid19-forecast-hub-
evaluation#evaluation). We follow the same rules to calculate the 2-week ahead forecast error ε for
Washington-Arlington-Alexandria metropolitan area2:

ε =
(D̂evaluation date −Dprojection date−1)− (Devaluation date −Dprojection date−1)

(Devaluation date −Dprojection date−1)
∗ 100

where D is ground true death, D̂ is predicted death, evaluation date is the last date of the forecast
and projection date is the first date of the forecast. The Covid19 Hub gives forecast errors on a
weekly basis starting April, 20. Since our data sample ends April, 29th, we evaluate our model by
comparing the 2-week ahead forecast error calculated on April, 27 for the time period April, 27-May,
9. Accordingly, we set our evaluation date to May,9 and projection date to April, 27 (so that day
before projection date corresponds to April, 26). We compare the forecast errors in Table 2. We see

Model Error
Baseline 19.3

COVIDhub-baseline 2.0
CovidAnalytics-DELPHI -8.0

IowaStateLW-STEM 25.9
IHME-CurveFit -63.3

LANL-GrowthRate -18.5
UT-Mobility 44.4

UMass-MechBayes 45.0
YYG-ParamSearch -25.9

CurrentModel 39.5
Table 2: Model Comparisons across Various Models.

that our model is within the error range of other models, and performs reasonably well as compared to
others. Our goal for future versions is to drive that error down so that we get higher quality estimates
and hence results.

1.3 Derivation ofR0

We follow closely Chapter 6 of Mathematical Epidemiology. We omit the reference to time for
simplicity. For our model, we take the Exposed and Infected compartment, E and I as disease
compartments. Note that this leaves out the Hospitalized compartment from the set of disease
compartments, and while we recognize that the evolution in that compartment is highly relevant for
the dynamics of the reproduction rate (since hospitalized individuals can expose susceptible ones),
we are not considering the case for this version of the paper.

We define the next generation matrix for the system at the disease-free equilibrium K as FV −1,
where F is the matrix representing the dynamics between the non-disease and disease compartments,
and V represents the dynamics between the disease compartments. It is important to note that for
our model, once individuals leave the infected compartment, they do not affect the dynamics of the
disease anymore (cannot become Susceptible/Exposed/Infected again), so there is no interaction
between Hospitalized and subsequent compartments with the disease compartments. Therefore, in
our case (recall that τCon,S = ρ N

NS
. That is, it accounts for the size of the susceptible compartment

S).

F =

[
0 1

τCon,S

0 0

]
, V =

[
1

τInc
0

− 1
τInc

1
τRec

+ 1
τDia,S

+ ρHos

]
2These models only calculate state-wide errors rather than metropolitan area errors, so for comparison we

look at the errors for District of Columbia, which we believe is a good approximation as DC is the major
component of the Washington-Arlington metropolitan area
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Fij is the rate at which the incoming individuals affect compartment i through compartment j. There
is only one non-zero element, since the only way individuals enter the dynamics of the disease is
by the exposed compartment through the infected compartment (as it interacts with the susceptible
compartment).

In turn, Vij is the rate at which exiting individuals affect compartment i through compartment j.
Individuals in the exposed compartment exit and enter the infected compartment at a rate 1

τInc
, and

there is no reentering of individuals from the infected compartment to the exposed compartment. The
lower right corner represents is the rate at which individuals in the infected compartment exit the
dynamics of the disease.

Then, we have that:

K = FV −1 =
1

τCon,S
×
[
( 1
τRec

+ 1
τDia,S

+ ρHos)
−1 ( 1

τRec
+ 1

τDia,S
+ ρHos)

−1

0 0

]
Which yields:

K =
1

τCon,S

(
1

τRec
+

1

τDia,S
+ ρHos

)−1
×
[
1 1
0 0

]
eig(K) =

1

τCon,S

(
1

τRec
+

1

τDia,S
+ ρHos

)−1
× eig

([
1 1
0 0

])
It directly follows from the expression above that the matrix part of K has two eigenvalues, 1 and 0.
Since 1 is the eigenvalue with the largest modulus, then, the reproductive factor will be equal to:

R0 =
1

τCon,S

(
1

τRec
+

1

τDia,S
+ ρHos

)−1
.

1.4 Synthetic Control Details

1.4.1 General Approach to Synthetic Controls

Synthetic Controls have become “arguably the most important innovation in the policy evaluation
literature in the last 15 years” according to Athey & Imbens (2017) [2]. In basic causal inference
language terms, the treatment effect τ of a policy on individual i is the difference between the
individual’s potential outcome under the policy Yi(1) and her potential outcome with no policy Yi(0),
i.e., τ = Yi(1) − Yi(0). We know from the fundamental problem of causal inference that we can
only observe individual i under a single policy regime given some point of time. Hence, the role of
the researcher is to come up with the best counterfactual possible that approximates the potential
outcome of individual i under the alternative policy regime that is unobserved. Synthetic Controls
constitute one such method for data with panel structure. We now present the basic set-up we are
facing in the context of COVID-19. We observe N areas for T periods of time. The N th area is
treated at time T ∗ with a lock-down policy while the remaining N − 1 areas are never treated during
these T periods. Let Y0 be an N × (T ∗ − 1) matrix which includes the observed outcomes of all
units in the pre-intervention period. We also have Y01, an N − 1 × (T − T ∗) matrix containing
the outcomes for the control units in the post-intervention period and Y11, a 1× (T − T ∗) matrix
containing the outcomes for the treated unit in the post-intervention period. Notice that Y11 contains
the potential outcomes for the treated unit under treatment. Our goal is to use the data in Y0 such
that we can re-construct Y10, the potential outcomes of the treated unit post-treatment had the unit
not been treated, from Y01. To achieve this, we first need to make an assumption that Y0 can be
approximated by a lower dimensional matrix L and some noise ε:

Y0 = L + ε

Under this assumption, there exists a representation of L as a linear factor model:

L = MΛ
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where M is an N ×R matrix and Λ is a R× (T ∗ − 1) matrix. Both M and Λ are latent unobserved
matrices with M containing the vector of unit-specific effects fixed over time and Λ the vector of
time effects that are common to all units but change across time. Remember, pre-intervention, none
of the units have been treated such that Y0 = Y (0), i.e., all pre-intervention observed outcomes are
equal to the potential outcome of the units without treatment. So, for each area i and t < T ∗, the
model becomes3:

Yit = Lit + εit =
∑
r

µi,rλr,t + εit

The goal of synthetic controls is to find area-specific weights such that:

LNt =

N−1∑
i=1

ω∗i Lit

Clearly, we can never obtain {ω∗i }
N−1
i=1 since L is unobserved. Rather we observe L and noise. Hence,

the best we could do is to obtain proxy weights that satisfy:

YNt =

N−1∑
i=1

Yit =

N−1∑
i=1

ωiLit +

N−1∑
i=1

ωiεit

It becomes clear from the above formula that the proxy weights {ωi}N−1i=1 are not ideal since they will
necessarily fit to noise as well. Hence, we need to feel confident that we work with series that have
less noise (variance of ε is small), we have a large enough number of pre-treatment periods relative to
the number of control units (this is both to average out noise over time as well as to have enough
time variation coming from L in order to be able to estimate the weights precisely), and we also have
access to good controls (we do not want the controls to be too different from the treated unit, i.e., if
control outcomes are too different, it could be that the heterogeneity comes from the idiosyncratic
shock ε rather than L which is what we are matching on). For details, check the tutorial by Abadie
(2019) [1]. To estimate the weights in practice, we need to solve the following constrained linear
optimization program:

min
{ωi}N−1

i=1 , ω0

T∗−1∑
t=1

(
YN,t − ω0 −

N−1∑
i=1

ωiYi,t

)2
Now, we could impose various types of constraints depending on what we think makes sense:

1. The original SC paper imposes:

N−1∑
i=1

ωi = 1, ωi ≥ 0

This makes intuitive sense since these constraints restrict the set of predictions to the
convex hull of the donor states (modulo the systematic additive difference thanks to the
unit intercept, ω0) which reduces the danger of extrapolation and give interpretability to
the weights. Furthermore, the standard SC weights act as a natural regularizer thanks to
introducing sparsity: if the treated outcome is outside of the convex hull of the control
units, the weights ensure that the estimated counterfactual becomes a projection of YNt
onto one side of the convex hull of controls, which automatically excludes some controls.
The obvious limitation is that if the treated unit already is inside the convex hull, then there
might be an infinite number of solutions and a general regularization technique might be
needed to select the best one.

3To exemplify, µi could be a vector of size 2 that contains residents’ propensity to hug each other in a given
state and the proportion of inhabitants with a genetically low immunity system. These characteristics clearly
differ across states, but they are all constant across time. Now, let us assume λ1,t, is positive and increasing over
time whereas λ2,t is positive and decreasing overtime. The interpretation is that the more socially proximate
residents are in a given state, the more easily the disease will be transmitted. This effect will be even stronger
over time, since more and more people become infected overtime such that hugging becomes more dangerous
over time. On the other hand, the more people there are with low immunity, the more vulnerable the population
is to COVID-19; however, as it spreads more and more, residents achieve herd immunity, such that having
genetically low immunity no longer has such a strong effect on spreading the disease.
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2. A general approach that is closer to standard training algorithms in Machine Learning is
to not impose particular constraints on the weights, but rather impose a flexible regularizer
such as Elastic Net. The researcher then tunes the regularization parameters on a train set
and validates the fits on a validation set. This is obviously more demanding on the size of
the pre-intervention period as we need to ensure we keep enough pre-treatment periods for
training.

In this report, we experiment with both approaches. We now explain how we approached the Synthetic
Control analysis in our particular context.

1.4.2 Application of Synthetic Controls

Remember again the linear factor model for the potential outcome under no treatment:

Yit(0) =
∑
r

µi,rλt,r + εit

The model imposes that λt be uniform across units (common time shocks) so that the difference in
observed outcomes across units for a given t depends on how these time-shocks are differentially
amplified at each period t which depends on the µis which are unit-specific. µi could for instance
include the share of vulnerable population in area i or cultural practices (such as hugging, kissing,
etc.), all are plausible determinants for the spread of the virus. The role of SC weights is indeed
to construct a copy of the treated unit which will be equivalent in terms of the amplification effect
which depends on µi. Hence, it is critical to ensure that the assumption on the uniformity of λt
across units is satisfied and that is why we need to pay particular attention to how we define our
time dimension. It makes sense, then, to work with the series in logs, as this assumption is more
likely to apply in this context of exponential raw outcomes. Ultimately, it boils down to pick the
correct starting date of the epidemic, T0. Picking T0 correctly becomes all the more important as the
sensitivity analysis of the epidemiological model above has shown that along with the isolation effect,
the start date of the epidemic contributes most towards the loss function. Ideally, we would set T0 as
the day at which patient 0 gets infected and starts spreading the virus. Hence, it becomes clear that
using calendar dates is not a great choice as this would amount to assuming that patient 0 occurred at
the same calendar date for all units. It might be tempting to believe this holds approximately since by
looking at case time series across states, it seems like most states report their first documented cases
around the same time in early March. However, the uniform documented case reporting could just be
due to uniform testing capacities across states at the initial stages and might not be revealing of the
actual spread of the epidemic.

Rather than looking at documented cases, we propose to look at time series of reported deaths to
infer T0, as death reporting is more accurate and less dependent on reporting or testing capacity. We
believe the day of first reported death is informative about T0. For illustration, assume a mortality
rate of 0.01. Then, at their respective T0, all units will have experienced around 100 documented
cases three weeks earlier relative to T0 (as according to epidemiologists the average time between
contracting the virus and dying is three weeks [7, 24]). We should also keep in mind, however, that
areas which have reported more deaths in the first few days since the first death probably had many
more infections three weeks ago, as compared to areas that reported only a few deaths in the first
week after the first recorded death. Hence, we will ensure to select control areas that had a similar
number of deaths in the first week since the first death as our treated unit. We give specific details of
our approach by conducting a case study for the Washington-Arlington-Alexandria metropolitan area.

The shelter in place order (SIPO) for the Washington-Arlington metropolitan area was implemented
on April 1st, or 14 days after its first registered death. In addition, we know from epidemiological
evidence that death rates should not be affected earlier than 20 days since the implementation of
the policy [7, 24], hence we could use 14 + 20 = 34 periods for estimating the weights. However,
we choose to be conservative and select a placebo window of only 15 periods such that we have 29
periods for estimation. In addition, we decide to cut the first five days of the series because of noise
in reporting during the first days. We also decide to set aside the last 8 periods of the estimation
period for validation (where we would be testing our out-of-sample fit). Overall, we are left with
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16 time periods for the estimation of weights. With so few periods for estimation, we cannot fully
rely on letting the training process choose which areas matter most for the counterfactual and we
should use our judgment to further restrict the set of potential controls by design. First, we restrict
the sample to metropolitan areas only. Metropolitan areas are, by their definition, similar in terms of
density and urbanity levels so as they constitute a credible control pool. It would not make sense to
consider micropolitan areas as those are potentially very different in terms of urbanity compared to
our treated unit, which would make it hard to achieve a low training error. As outlined above, we also
restrict the donor pool to areas that had a similar number of deaths reported in the first week since the
first death occurred. The Washington DC area had 5 deaths on the 5th day since its first death, so we
keep controls whose number of deaths lies within a similar window. There is obviously a trade-off in
terms of setting the width of the window. If the window is too wide, we get a larger donor pool, but
then the algorithm also becomes more prone to overfitting as we need to keep the number of controls
small relative to the number of estimation periods available. On the other hand, making the window
too small leaves us with few controls which makes it hard to achieve a low training error. Hence, we
experiment with a width of 1 and 2 (i.e, the control units have a cumulative number of deaths on the
fifth day between 4 and 6 (respectively, 3 and 7)).

We experiment with various types of weights and pick the best which has both a low training and
validation error. We always include a weight intercept as given preliminary analysis this leads to
lower errors both on training and validation sets. We try:

1. Traditional SC weights (which satisfy non-negativity and sum up to 1).

2. Non-restricted SC weights.

3. Non-restricted SC weights with L2 regularization.

4. Non-restricted SC weights with elastic net.

We also try various rules for smoothing the series to remove noise due to reporting and weekend
effects which is present all throughout. We obtain our best fit (both on training and validation set)
when setting a window of 2, using non-restricted SC weights with L2 penalty term equal to 0.2 and
using a smoothing the series by using a moving average of order 2.We get a Training RMSE of 0.5797
and a Validation RMSE of 0.1791. Our selected controls with weights in parentheses: Controls:
Cedar Rapids, IA (0.5562), Des Moines, IA (0.8297), Provo-Orem, UT (0.3588) and Salt Lake City,
UT (0.4327).

Figure 2: Days after 1st death: 5; Cluster range: 2; Smoothing Order: 2; `2-pen: 0.2; Standard SC weights: No

What happens if we add more controls? We now allow for a window of 4 so that our donor pool now
contains control areas with number of cumulative deaths on the 5th day since the 1st day of reported
death between 1 and 9. Now, we get many more controls to match on, but we end up basically with
as many controls as estimation periods. Hence, we need sparsity. Standard synthetic control weights
indeed act as a natural regularizer as long as the treated unit lies outside of the convex hull of the
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control units. The synthetic unit is then the projection of the treated unit onto one of the outer sides
of the N − 1-dimensional convex hull, which implies that some of the controls will be assigned a
zero weight. Applying the standard SC weights results in a trend that can be seen in Fig. 3.

Figure 3: Days after 1st death: 5; Cluster range: 1; Smoothing order: 2; `2-pen: 0; Standard SC weights: Yes

We see that the procedure does not produce good results. This allows us to conclude that while SC
weights do indeed impose sparsity (indeed we check that all the weight is concentrated on a single
area!), they represent only one particular form of regularizer and there is no reason to assume that this
is the best one. Obviously, the advantage of SC weights is interpretability but if the procedure itself is
generating too high training and validation errors, interpretability loses its purpose as we are getting
the wrong counterfactual anyway. This motivates us to look for a more general way of regularizing:
elastic net. Regularization from elastic net is a convex combination of L1 and L2 regularization. L1

buys us sparsity whereas L2 reduces variance and hence buys a better out-of-sample fit. Using an
elastic net with α = 0.05 and a regularization parameter of 1.4 indeed gets us much closer to the first
best although does not reach the first best. We also obtained close to first-best results with further
restricting the set of controls by design, ie, by reducing the cluster window to 1. This resulted in
two remaining controls, and perhaps not surprisingly, no regularization was needed. In that case, we
obtain the Fig. 4.

Figure 4: Days after 1st death: 5; Cluster range: 1; Smoothing Order: 0; `2-pen: 0; Standard SC weights: No

We get a Training RMSE of 0.74 and a Validation RMSE of 0.24. Our selected controls with weights
in parentheses: Cedar Rapids, IA (0.99), Des Moines, IA (0.93). Additional analyses available upon
request show that our epi-parameter estimation results are stable to using the above synthetic control
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Figure 5: R0

Figure 6: ρisol for the Observed Series post-intervention

curve, which is slightly worse that the first best. This shows that slight variations in the estimation of
the synthetic curve should not affect our epi-model estimation results significantly.

Overall, this section suggests that with few pre-intervention data, we need to balance out a fully
data-driven approach to selecting the weights with a more judgement-based approach based on
selecting good controls ex-ante. We believe the approach we adopt illustrates this point well.

1.5 Full Results

Here, we present the full estimation results for the parameters of our compartmental model. Posteriors
are give both when fitting the observed curve only and when fitting the model using both the observed
and synthetic curves. We can see that posteriors using the joint fits are generally tighter. Part of this
could be simply mechanical because of using more input and part of it could be that we are actually
bringing more information to our model via the synthetic curve.
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Figure 7: ρisol for the Observed Series post-intervention

Figure 8: Fext

Figure 9: Fext,rate

Figure 10: ρfat
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Figure 11: ρhos

Figure 12: τDia,S

13



References
[1] A Abadie. Using synthetic controls: Feasibility, data requirements, and methodological aspects.

Journal of Economic Literature, 2019.

[2] Susan Athey and Guido W Imbens. The state of applied econometrics: Causality and policy
evaluation. Journal of Economic Perspectives, 31(2):3–32, 2017.

[3] CDC. COVID-19 Data from NCHS, 2020. https://www.cdc.gov/nchs/nvss/vsrr/
covid19/index.htm.

[4] CDC. Excess Deaths Associated with COVID-19, 2020. https://www.cdc.gov/nchs/
nvss/vsrr/covid19/excess_deaths.htm.

[5] CDC. Provisional Death Counts for Coronavirus Disease (COVID-19) - Technical Notes, 2020.
https://www.cdc.gov/nchs/nvss/vsrr/covid19/tech_notes.htm.

[6] Center for Systems Science and Engineering at Johns Hopkins University. Coronavirus COVID-
19 Global Cases, 2020. https://coronavirus.jhu.edu/map.html.

[7] World Health Organization China. Report of the WHO-China Joint Mission on Coron-
avirus Disease 2019 (COVID-19), 2020. https://www.who.int/docs/default-source/
coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

[8] USA Facts. Coronavirus Locations: COVID-19 Map by County and State, 2020. https:
//usafacts.org/visualizations/coronavirus-covid-19-spread-map/.

[9] Richard Florida. The geography of coronavirus. City-
lab, 2020. https://www.citylab.com/equity/2020/04/
coronavirus-spread-map-city-urban-density-suburbs-rural-data/609394/.

[10] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B
Rubin. Bayesian data analysis. CRC press, 2013.

[11] ArcGIS Hub. Metropolitan statistical areas for US counties - Sept 2018, 2020.
https://hub.arcgis.com/datasets/47c5474c19cb4f4d9f102a84b4b8e462_2?
orderBy=METDIVFP&orderByAsc=false.

[12] Iris Hui, Dante Chinni, and Ari Pinkus. The American Communities Project. https://www.
americancommunities.org/.

[13] The Internet. Household Income in the United States. https://en.wikipedia.org/
wiki/Household_income_in_the_United_States#:~:text=The%20U.S.%20Census%
20Bureau%20reported,2016%2C%20exceeding%20any%20previous%20year.

[14] Josh Katz, Denise Lu, and Margot Sanger-Katz. What is the real coronavirus death toll in each
state? The New York Times, 2020. https://www.nytimes.com/interactive/2020/05/
05/us/coronavirus-death-toll-us.html.

[15] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of
a mathematical and physical character, 115(772):700–721, 1927.

[16] William Ogilvy Kermack and Anderson G McKendrick. Contributions to the mathematical
theory of epidemics. iii.—further studies of the problem of endemicity. Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character,
141(843):94–122, 1933.

[17] WO Kermack and AG McKendrick. Contributions to the mathematical theory of epidemics: V.
analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete
immunity. Epidemiology & Infection, 39(3):271–288, 1939.

[18] Chirag Modi, Vanessa Boehm, Simone Ferraro, George Stein, and Uros Seljak. Total covid-19
mortality in italy: Excess mortality and age dependence through time-series analysis. medRxiv,
2020.

14

https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/tech_notes.htm
https://coronavirus.jhu.edu/map.html
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://www.citylab.com/equity/2020/04/coronavirus-spread-map-city-urban-density-suburbs-rural-data/609394/
https://www.citylab.com/equity/2020/04/coronavirus-spread-map-city-urban-density-suburbs-rural-data/609394/
https://hub.arcgis.com/datasets/47c5474c19cb4f4d9f102a84b4b8e462_2?orderBy=METDIVFP&orderByAsc=false
https://hub.arcgis.com/datasets/47c5474c19cb4f4d9f102a84b4b8e462_2?orderBy=METDIVFP&orderByAsc=false
https://www.americancommunities.org/
https://www.americancommunities.org/
https://en.wikipedia.org/wiki/Household_income_in_the_United_States#:~:text=The%20U.S.%20Census%20Bureau%20reported,2016%2C%20exceeding%20any%20previous%20year.
https://en.wikipedia.org/wiki/Household_income_in_the_United_States#:~:text=The%20U.S.%20Census%20Bureau%20reported,2016%2C%20exceeding%20any%20previous%20year.
https://en.wikipedia.org/wiki/Household_income_in_the_United_States#:~:text=The%20U.S.%20Census%20Bureau%20reported,2016%2C%20exceeding%20any%20previous%20year.
https://www.nytimes.com/interactive/2020/05/05/us/coronavirus-death-toll-us.html
https://www.nytimes.com/interactive/2020/05/05/us/coronavirus-death-toll-us.html


[19] NYT. Coronavirus (covid-19) data in the united states. https://github.com/nytimes/
covid-19-data.

[20] Government of the District of Columbia. Covid-19 surveillance, 2020. https://coronavirus.
dc.gov/data.

[21] USA Today. US coronavirus map: Tracking the outbreak,
2020. https://www.usatoday.com/in-depth/graphics/2020/03/10/
us-coronavirus-map-tracking-united-states-outbreak/4945223002/.

[22] Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Approxi-
mate bayesian computation scheme for parameter inference and model selection in dynamical
systems. Journal of the Royal Society Interface, 6(31):187–202, 2009.

[23] Bryan Wilder, Marie Charpignon, Jackson A Killian, Han-Ching Ou, Aditya Mate, Shahin
Jabbari, Andrew Perrault, Angel N Desai, Milind Tambe, and Maimuna S Majumder. Modeling
between-population variation in covid-19 dynamics in hubei, lombardy, and new york city.
Proceedings of the National Academy of Sciences, 2020.

[24] Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang,
Bin Song, Xiaoying Gu, et al. Clinical course and risk factors for mortality of adult inpatients
with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 2020.

15

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://coronavirus.dc.gov/data
https://coronavirus.dc.gov/data
https://www.usatoday.com/in-depth/graphics/2020/03/10/us-coronavirus-map-tracking-united-states-outbreak/4945223002/
https://www.usatoday.com/in-depth/graphics/2020/03/10/us-coronavirus-map-tracking-united-states-outbreak/4945223002/

	Introduction
	Combining Epidemiological Models and Synthetic Controls
	Estimation Results
	Conclusion
	APPENDIX
	Data Source Description
	Model Details
	Model Description
	Model Performance

	Derivation of R0
	Synthetic Control Details
	General Approach to Synthetic Controls
	Application of Synthetic Controls

	Full Results


